PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING FOR SISSA

RECEIVED: August 30, 2007
ACCEPTED: September 18, 2007
PUBLISHED: October 8, 2007

I

BRST approach to Lagrangian formulation for
mixed-symmetry fermionic higher-spin fields

Pavel Yu. Moshin® and Alexander A. Reshetnyak®

@ Instituto de Fisica, Universidade de Sao Paulo,

Rua do Matao, Travessa R, 187, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, Brazil
b Tomsk State Pedagogical University,

Komsomolskiy Ave. 75, 634041 Tomsk, Russia

¢Laboratory of Non-equilibrium State Theory,

Institute of Strength Physics and Materials Science,

Akademicheskiy Ave. 2/1, 634021 Tomsk, Russia

E-mail: poshin@dfn.if.usp.b, reshet@tspu.edu.ry

ABSTRACT: We construct a Lagrangian description of irreducible half-integer higher-spin
representations of the Poincare group with the corresponding Young tableaux having two
rows, on a basis of the BRST approach. Starting with a description of fermionic higher-spin
fields in a flat space of any dimension in terms of an auxiliary Fock space, we realize a con-
version of the initial operator constraint system (constructed with respect to the relations
extracting irreducible Poincare-group representations) into a first-class constraint system.
For this purpose, we find auxiliary representations of the constraint subsuperalgebra con-
taining the subsystem of second-class constraints in terms of Verma modules. We propose
a universal procedure of constructing gauge-invariant Lagrangians with reducible gauge
symmetries describing the dynamics of both massless and massive fermionic fields of any
spin. No off-shell constraints for the fields and gauge parameters are used from the very
beginning. It is shown that the space of BRST cohomologies with a vanishing ghost num-
ber is determined only by the constraints corresponding to an irreducible Poincare-group
representation. To illustrate the general construction, we obtain a Lagrangian descrip-
tion of fermionic fields with generalized spin (3/2,1/2) and (3/2,3/2) on a flat background
containing the complete set of auxiliary fields and gauge symmetries.
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1. Introduction

The study of various aspects of higher-spin (HS) field theory has attracted a considerable
attention for a long time due to the hope of discovering new possible approaches to the
unification of the fundamental interactions. Higher-spin field theory is closely related to
superstring theory, which operates with an infinite tower of bosonic and fermionic higher-
spin fields. The problem of a covariant Lagrangian description of fields with an arbitrary
spin propagating on flat [[]-[LJ and (A)dS [[L§-PR7] backgrounds as well as the problem
of constructing an interacting higher-spin field theory are in the permanent focus of re-
search (for reviews and more references, see, e.g., [B]). One of the attractive features of
investigating higher-spin gauge theories in AdS spaces is due to a possible relation of this
study to the tensionless limit of superstring theory on the AdSs x S5 Ramond-Ramond
background [RY, and the conformal N' =4 SYM theory in the context of the AdS/CFT
correspondence [BI].

At present, the dynamics of totally symmetric higher-spin fields presents the most
well-developed direction in the variety of unitary representations of the Poincare and AdS
algebras [, I, [[6, [[7, RI]. To a great extent, this is caused by the fact that in a 4d space-time
there is no place for mixed-symmetry irreducible representations with the exception of dual



theories.! In higher space-time dimensions, there appear mixed-symmetry representations
determined by more than one spin-like parameters, and the problem of their field-theoretic
description is not so well-developed as for totally symmetric irreps. Starting from the pa-
pers of Fierz-Pauli and Singh-Hagen [fll, P] for higher-spin field theories in the Minkowski
space, it has been known that all such theories include, together with the basic fields of a
given spin, also some auxiliary fields of lower spins, necessary to provide a compatibility
of the Lagrangian equations of motion with the relations that determine irreducible rep-
resentations of the Poincare group. Attempts to construct Lagrangian descriptions of free
and interacting higher-spin field theories have resulted in consistency problems, which are
not completely resolved until now.

The present work is devoted to the construction of gauge-invariant Lagrangians for
both massless and massive mixed-symmetry spin-tensor fields of rank ny + ne + ... + ng,
with any integer numbers n; > no > ... > ni > 1 for kK = 2 in a d-dimensional Minkowski
space, the fields being elements of Poincare-group irreps with a Young tableaux having
two rows. In the case of the Minkowski space, several approaches have been proposed to
study mixed-symmetry higher-spin fields ([, §, [, [2]. Our approach is based on the BFV-
BRST construction [BJ], see also the reviews [B4, Bg], which was initially developed for a
Hamiltonian quantization of dynamical systems subject to first-class constraints. Following
a tradition accepted in string theory and higher-spin field theory, we further refer to this
method as the BRST method, and to the corresponding BFV charge, as the BRST operator.
The application of the BRST construction to higher-spin field theory consists of three steps.
First, the conditions that determine the representations with a given spin are regarded as
a system of first- and second-class operator constraints in an auxiliary Fock space. Second,
the system of the initial constraints is converted, with a preservation of the initial algebraic
structure, into a system of first-class constraints alone in an enlarged Fock space (see [Bq]
for the development of conversion methods), with respect to which one constructs the
BRST charge. Third, the Lagrangian for a higher-spin field is constructed in terms of
the BRST charge in such a way that the corresponding equations of motion reproduce
the initial constraints. We emphasize that this approach automatically implies a gauge-
invariant Lagrangian description reflecting the general fact of BV-BFV duality [B7, Bg],
realized in order to reproduce a Lagrangian action or a probability amplitude by means of
a Hamiltonian object.

The construction of the flat dynamics of mixed-symmetry gauge fields has been exam-
ined in [, f, -0, [T, [, including the construction of Lagrangians in the BRST approach
for massless bosonic higher-spin fields with two rows of the Young tableaux [ff], and recently
also for interacting bosonic HS fields [Bd] and for those of lower spins [0 on the basis of
the BV cohomological deformation theory [4]]]. Lagrangian descriptions of massless mixed-
symmetry fermionic and bosonic higher-spin fields in the (A)dS spaces have been suggested
within a “frame-like” approach in [B7], whereas for massive fields of lower superspins in the
flat and (A)dS spaces they have been examined in [[LJ]. To be complete, note that for free
totally symmetric higher-spin fields of integer spins the BRST approach has been used to

'For a detailed discussion of dual theories in various dimensions, see [@, @, @]



derive Lagrangians in the flat space [}, iJ] and in the (A)dS space [[£3]. The corresponding
programme of a Lagrangian description of fermionic HS fields has been realized in the flat
space [i4] and in the (A)dS space [4].

In this paper, we construct a gauge-invariant Lagrangian description of fermionic
HS fields in a Minkowski space of any dimension, corresponding to a unitary irreducible
Poincare-group representation with the Young tableaux having two rows of length ni,ng
(n1 Z 712).

The paper is organized as follows. In section P, we formulate a closed Lie superalgebra
of operators, based on the constraints in an auxiliary Fock space that determines an irre-
ducible representation of the Poincare group with a generalized spin s = (n1+1/2,ns+1/2).
In section [, we construct a Verma module, being an auxiliary representation for a rank-2
subsuperalgebra of the superalgebra of the initial constraints corresponding to the sub-
system of second-class constraints. This representation is then realized in terms of new
(additional) creation and annihilation operators in Fock space. Note that a similar con-
struction for bosonic HS fields in a flat space has been presented in [£§]. In section M,
we carry out a conversion of the initial system of first- and second-class constraints into
a system of first-class constraints in the space being the tensor product of the initial and
new Fock spaces. Next, we construct the BRST operator for the converted constraint
superalgebra. The construction of an action and of a sequence of reducible gauge trans-
formations describing the propagation of a mixed-symmetry fermionic field of an arbitrary
spin is realized in section . We show that the Lagrangian description for a theory of
a massive half-integer mixed-symmetry HS field in a d-dimensional Minkowski space is
deduced by dimensional reduction of a massless HS field theory of the same type in a
(d+1)-dimensional flat space. In section [}, we sketch a proof of the fact that the resulting
action reproduces the correct conditions for a field that determine an irreducible represen-
tation of the Poincare group with a fixed s = (n1 +1/2,n2 + 1/2) spin. We illustrate the
general formalism by a construction of gauge-invariant Lagrangian actions for massless and
massive spin-(1 + 1/2,1/2) and spin-(1 + 1/2,1 + 1/2) fields in section [§. In Conclusion,
we summarize the results of this work and outline some open problems.

In addition to the conventions of [f], #4, E6], we use the notation e(A), gh(A) for the
respective values of Grassmann parity and ghost number of a quantity A, and denote by
[A, B} the supercommutator of quantities A, B, which in the case of definite values of
Grassmann parity is given by [A, B} = AB — (—1)sW=(B) g4,

2. Half-integer HS symmetry algebra in flat space-time

In general, a massless half-integer irreducible representation of the Poincare group in a d-
dimensional Minkowski space is described by a spin-tensor field (I)mmunl Lo Vng ool (z),
with the Dirac index being suppressed, of rank ni + ng 4+ ... + ni and generalized spin
s=(n1+1/2,n0+1/2,...,n+1/2), which corresponds to a Young tableaux with k rows
of length ni,ns,...,ng, respectively, and k < [(d — 1)/2]. This field is symmetric with
respect to the permutations of each type of indices u;, 1 =1,... k.



In this paper, we restrict ourselves to the fields characterized by a Young tableaux
with & = 2 rows:

Ml/’LQ e e e e e e e . . ‘Mnl‘ . (2.1)
]/1 ]/2 .. P P A N V'I’LQ

The field @), (1), () = Pus.pin, v1.0m, (T), as an element of a Poincare-group irrep,
obeys the mass-shell and +-traceless conditions for each type of indices?

Z’Y“@Mb(mnl’(y)@ (x) =0, (2.2)
g (IDMM---;MI,(V)”2 () =0,
’yyl(I)W)npvll/z...un2 (x) =0. (2.4)

The correspondence with a given Young tableaux implies that after the symmetrization
of all the vector indices of the first row with any vector index of the second row the field
D (1), ,(v)n, () Decomes equal to zero:

ni
CI){(M)M V1 V2. Vng (x) = Z q)ul---ui—wluiﬂ---unl WHiV2.. . Vng (x) + (I>(u)n17(u)n2 (x) =0, (2-5)

i=1
where in the case 7 = 1 it is implied that ®,,u, 5., p1vs. v, (x) = Do pin. piny spava. vy (z).
In order to describe all the irreducible representations simultaneously, it is convenient

to introduce an auxiliary Fock space H generated by creation and annihilation operators

i+ ]

a;,", ay with additional internal indices, 4,7 = 1,2,
[aft, a{fr] = —77“,,5ij, 6 = diag(1,1). (2.6)

The general state (a Dirac-like spinor) of the Fock space has the form

[e.9]

ni
+ n + n
@) = Z Z (p(ﬂ)np(y)ng () afﬂl alu 161;”1 cee GQV 210), (2.7)

n1=0mn2=0

providing the symmetry property of ® ng (V) (z) under the permutation of indices of the
same type. We refer to the vector (R.7) as the basic vector.

Because of the property of translational invariance of the vacuum, 0,[/0) = 0, the
conditions (R.4)—(2.4) can be equivalently expressed in terms of the bosonic operators

to=i"0, ,  1'=9"d], , (2.8)
t = allfaQ" (2.9)

as follows:
to|®) = '|®) = t|®) = 0. (2.10)

Thus, the constraints (.1() with each component ®(,,), (), (z) of the vector (E.7) subject
to (.9)-(R.4) describe a field of spin (ny + 1/2,ns + 1/2).

2Throughout the paper, we use the mostly minus signature Nuw = diag(+,—, ..., —), u,v =0,1,...,d—1,
and the Dirac matrices satisfy the relations {v*,~v"} = 2n*".



Because of the fermionic nature of equations (2.2)-(R.4) with respect to the standard
Lorentz-like Grassmann parity, and due to the bosonic nature of the primary constraint
operators to, ', (fy) = e(#) = 0, in order to equivalently transform these operators into
fermionic ones, we now introduce a set of d+ 1 Grassmann-odd gamma-matrix-like objects
A*, 4, subject to the conditions

(7,53 y=20",  {3*,7}=0, F*=-1, (2.11)

and related to the conventional gamma-matrices as follows:?
A = 505, (2.12)

We can now define Grassmann-odd constraints,

to=—13"0,,  t'=7"d), (2.13)

related to the operators (2.§) as follows:
(to,t") =7 (o, t"). (2.14)

We next define an odd scalar product:

o0

(F[@) — / e (O (@0, ), (5) ¢

ny,k1,n2,ke=0

alt. afﬂnla;’“ . a;rVnQ |0). (2.15)

The operators tg, t*,¢ in (R.9) and (R.13), with ¢+ = ’y“afﬁ and tT = ai*al“ being Her-
mitian conjugate, respectively, to ¢, ¢ with reference to the scalar product (), generate
an operator Lie superalgebra composed of the operators®

to = —13"9), (2.16)
t=3"al,, ' =Atall (2.17)
t= a}faz“ ) th = afj‘al“ , (2.18)
I' = —ial, 0", I = —ialto*, (2.19)
lp = 0"9),, go = —aa" + ¢, (2.21)

which is invariant under Hermitian conjugation.
The operators (2.16)—(R.21)) form a superalgebra given by table [ll, with an omission of
the Poincare-group Casimir operator /g being the central charge of this algebra, where the

3For more details, see [@]
4For the operators 1'%, 12T in )7 we have used a definition slightly different from that of [@]7 where
([127 512-0—) — 2([127 l12+).



(L=} to | t ¢t t tt I It 1 1+ 96

to |—2lo| 20 | 20t 0 0 0 0 0 0 0

tk 2lk 4lki L _t26k1 _t15k2 0 _toé‘ki 0 Bkt tié‘ki
tk+ 2[1@-5— Atk 4lki+ ﬁ1+5k2 t2+6k1 toé‘ki 0 Ck,ij 0 _ti+5ki

t 0 t25i1 7t1+5i2 0 gé _ 93 1251'1 7[1+5i2 Dij Eij Fz
t+ 0 t16i2 —ﬁ2+5“ 98 _ gé 0 llé‘iQ _l2+6i1 Gij Hij Iz

1k 0 0 _to(gik 25k | _Llgk2 0 lo(gik 0 Jkii 1igik
1k+ 0 | tooik 0 1§k | 2§kl | g sik 0 Kk 0 _ i+ gik
1Kl 0 0 7ci,kl _ Dk 7le 0 _ KLk 0 LFLid li{k(;l}i
[kl+ 0 |=B®k 0 _ERL | R | Jiskl 0 — [id:kl 0 _H{k+ g}
gg 0 —tkéik thtgik _Fk —Jk | _pkgik| [ktgik | _pR{igiYk | pk{it+ gitk 0

Table 1: The superalgebra of the initial operators

quantities A*, BRI Ckii| DU gii| Fi TGS i RG] KRG RN are defined by the

relations

U P
IR — Z{ykéu [29]55

BFA —

Jki —

Aik — _292062k + 2t5i25k1 + 2t+5i16k2 ’

D — gli2gitt

1, .
_ it itk
215 R

Fi — t(5i2 . 5@'1)7

Gij — ll{i(sj}Q ,

1., .
_—qlit itk
2l R

Moy gk 4 96}

ki _ %t{iaj}k7
B = _Mitgi2
I = (7 — 62
HY = {2+ gt
ki _ %l{iéj}k7

_ 51']9 |:t <5l2(5j1 +6k16k])+5k25]161k) —|—t+ (611(6j2 +5k25kj)+6k16j25lk)]

_ 5l [t <5k2(5z’1 1ottty +5l25i15kl) Lt <5k1(5i2 +5l25li)+5l15i25lk>] } (2.28)

We call this algebra the half-integer higher-spin symmetry algebra in Minkowski space with

a Young tableaux having two rows.

From the viewpoint of constraint system theory, the above superalgebra is a system

of constraints, except for the operators glg, being non-degenerate in H. These operators,



as follows from table [, determine an invertible operator supermatrix of commutators for

;;, t,tT}, with the other constraints,

the subsystem of second-class constraints, {tx, tz, lij,1
to, lo, L, l;r, being first-class ones.

A conversion of this constraint system {oy}, including the operators gg, into a first-class
constraint system {O;} by means of an additive composition of oy with some operators o/,
depending on new creation and annihilation operators, oy — Or = o7+0/, can be effectively
realized only for the subsuperalgebra of the entire symmetry superalgebra that contains
the subsystem of second class-constraints and gé“'. The only requirement, as shown in [,
is that each of the Hermitian operators gg should contain linearly an arbitrary parameter

hE whose values are to be determined later.

3. Auxiliary representation for the superalgebra with second-class con-
straints

In this section, we describe the method of Verma module construction for the Lie super-
algebra with second-class constraints alone. Having denoted {o,} = {tk,t:,lij,l;;,glg},
oq € {or}, as the basis elements of the above superalgebra, and using the requirements
that 0,4, 0}, must supercommute, {04,0},] = 0, and that the converted constraints must be
in involution, {Og4, Op] ~ O., we find that the superalgebra of the additional parts o/, is
uniquely determined by the same algebraic conditions as those for the initial constraints.
In this case, it is unnecessary to convert the subsystem of the initial first-class constraints
not entering {o,}, and therefore they remain intact.

Following [i4] and the general method of Verma module construction for mixed-
symmetry integer-spin HS fields [E]], let us denote E® = (t¥;19, t) = (E%; E*1), (o >
0,1 > 0) for i < j, and define

Hi=gi+g0, gi=hi+..., E*=E*+E“Mh), ap=1,2, a1 =1,2,3,4. (3.1)

The quantities gf), E“ E~™ are the Cartan generators, positive and negative root vectors,
except for ap = 2 (see footnote 4) of the subalgebra so(3,2) in the superalgebra of second-
class constraints, and the odd generators E*, E~*° supplement the basis so(3,2) up to
that of the above superalgebra. The quantities gff, E'*, E~'® and H’,£% €~ have the
same identification respectively for the additional and enlarged operators of the symmetry
superalgebra.

Consider the highest-weight representation of the superalgebra of the additional parts
with the highest-weight vector |0)y annihilated by the positive roots and being the proper
vector of the Cartan generators:

E®0)y =0,a>0,  g5l0)y = h'[0)y . (3:2)

Following the Poincare-Birkhoff-Witt theorem, the basis space of this representation,
called in the mathematical literature the Verma module [[7], is given by the vectors

ﬁg,ﬁzj,n>v _ (E/—a?)n? (Ez_ag)ng (E/—oz})nn (E/—oz%)mz (El—oﬁ)nzz (E/—a‘ll)n|0>v’ (3.3)



where ﬁg = (n9,nY), My = (n11, N1, n22), nd,ny =0,1, n;j € No. Note that the restriction

for the values of 77} in (B.3) is due to the identities
(B B = q(Bot el ey =4 U ), i =1,2i<. (3.4)

Using the commutation relations of the superalgebra given by table [l and the formula
for the product of graded operators,

AB" =Y (—1)f BRI prkadi A, n >0, s=¢(B),
k=0

adb A = adp <ad’f{1A) , adpA = {A, B], (3.5)

we can calculate the explicit form of the Verma module. In (B.5), we have introduced
generalized coefficients for a number of graded combinations, C'(* )Z, that coincide with the

standard ones only for the bosonic operator B: C (0)" =C} = 4 (n - These coefficients
are defined recursively, by the relations

C(S)Z+1 _ (_1)s(n+k+1)c(s)2_1 + C(S)Z, n, k> 0, (36)

C(S)g =6 =1, cEr =0, n<k

and possess the properties C' (S)Z =C (5)2_ - The corresponding values of C (1)2 are defined,
for n > k, by the formulae

k+1)/2
n—k+1n— ’lk k+2 n— Z] SZJ In— Z] QZJ k(n+1)+[( +Z)/ ](i2j71+1)

cp=>" > ... > >« i=1 , (3.8)

tp=1 ip_1=1 i9=1 i1=1

which follow by induction, and in which [a] stands for the integer part of the number a. For
our purposes, due to n9 = 0,1 in (B-3), ), it is sufficient to know that C(l)g = C(l)(l] =
and C(l)?g = ng.

Then, following [£g] and making use of the mapping

|7, g nyy o |7 dign) = (7)™ (f) "2 (0F;)™ (b) ™2 (b8) "2 (67)"[0),  (3.9)

where |ﬁ2, My, n) , for ng =0, 1, nj; € Ny, are the basis vectors of a Fock space H’ generated
by new fermionic, f,j, fr, K =10,1, and bosonic, b”, bt,bij,b, 4,5 =1,2,4 < j, creation and
annihilation operators with the standard (only nonvanishing) commutation relations

{fkaflJr}:(Skl’ [ijab ] ‘l5jk, ’LS],]{?SZ, [b?b+]:1’ (310)

we can represent the Verma module as polynomials in the creation operators of the Fock
space H'.



First, we find the action of the negative root operators E'~¢ on the basis vectors. After

a simple calculation, one obtains

i+1
t/lJr nka nlma > =01 <1+ |: 9 :|>
LR Ty n)v = |7 Titm + 6i6im, n)v (3.12)

/+ |7y i, 1)y = |7y i, + 1)y — 2011 [ig, nan — 1,n12 + 1,m09, n)y (3.13)

0 0
ne + 1 Nno + 1
—n?<1+|: 22 :|> %?—1,ng+1m0d2,n11,n12,ngg+[ 22 :|,7”L>
1%

~0
—nyg |, n11,m2 — Lings + L)y

0
1
nl —|— 1m0d2 n2,n11 + |: 12_|_ :|,n12’n22;n> (311)
\%4

2

9+1
’I’L?, ng"'lmOan nii,ni2, n22+|:n2+ :|7 TL>
|4

—4n} ‘”1 1,19, n11,m12 + 1,n92, 10 >V},

<m

Second, for the positive root operators E'® we find

tll gaﬁlma >V = _2n(1](2n11 +nie—n+ hl) ‘n(l] - 1an(2)aﬁlman>v (315)

5

(capt (1)

+2(—1)”(1)ng( 12 ‘nl,n2 1,n11,n12 — 1,n99 + 1,n)y

O+1
n?+1m0d2,ng,n11—1—|—[nl;— },nlz,n22,n>
|4

0
1
ny, nd+1mod2,n11,mn12—1, n22+[n2;— ],n>
v

+‘n1’n2 1 nlm,n+1> )

t'Q‘ﬁg,ﬁlm,n>V:(—l) { 2n9(2n99 — i + n 4 h?) !nl,nQ L, i, )y (3.16)
0
ni19o nl—i—l
Mz
20 )
0 ng—{—l
1t (14255 )

—2nY (n(hl —h?—n+1) {n? — 1,09, Ay, n — 1>V

041
n(1)+1m0d27n87n11+ |:n1;_ :|7n12_17n227n>
\%

0
1
n(1], n(2]+1m0d2, ni1,ni2, g —1+ [n22+ ],n>
1%

0 0
—2n99 ‘nl —1,n9,n11,n12 + 1,092 — 1,n>v

0 0
—n1g 0§ — 1,n9,n11 + 1,n19 — 17712277”L>V>} ;



l/ll |ﬁ2,ﬁ1m,n>v = nll(n11—|—n12—|—n(1]—n—1—{—h1 |ﬁ2,n11—1,n12,n22,n>v (317)

ni2(n12—1)
4

e

0
np—1,n11,n12 — 1,n00 + 1,n>v>

n12 50
—5 [T 11, M2 1,n92,n+1)y+

—n?{Qng <
(—1)"2 nd+1
Ty T2 1+ 22 nd

— — n —
V2|7, iy )y = —2 <2n11 +n12+2n22+ Z(ng + Kk — 1> |3, na1, a2 — 1,m22,n)y
k

‘nk, n11, n12—2, noat+l, n)y

0
np—1, M, n + 1)y —ng2

0
1
—1,ng—l—lmon,nn,nlg—l,ngg—l—[nz; ],n> },
1%

4

1
+§nn11(h2 - hl +n — 1) |ﬁ2,n11 — 1,n12,n22,n — 1>V (3.18)
Tn11m22 ‘ﬁg,nn —Liniz+1,n2 —1,n)y

n22
5 ‘nk,nu,nm,nm —1L,n+ 1)y

% 1
T s+ P21

—1,n9+1mod2, 11, n12, 22 — [ 2l ] > }

2
0 n0
ng +1
+—2ny (14 o ,M12,N22, 1 )
2 2 v

2 |7, s )y = naz(niz+n+ny+nge—14h2) [}, n11, n12,n22 — 1, n)v (3.19)
nian

0
+71{2n8(n+2n22+h2)

XN922 [N

n+1mod2,n9—1,n1; —1+ [

_l’_

(n—1+h*—h') \ﬁi,nu,nm —1,np,n— 1)y,

niz2(niz — 1
7( ) k,nn + 1,112 — 2,n92,n)y

4
0 0 0
1 1
Lty O n+1mod2,n9 — 1,n11+ m sni2—1,n9,m )
2 2 2 v
t/ |ﬁg,ﬁlm,n>v = n(hl - h2 —-n+ 1) |ﬁ2,ﬁlm,n - 1>V (3.20)

—n1a |7}, ni1 41, n12— 1,22, n)y —2n2p |ﬁ2,n11,n12+1,n22—1,n>v
0
ni+1
-80+[%5])

Using expressions (B.11)-(B.20) and the mapping (B.9), we reconstruct the action of the
operators E'®, E'=%, g/l in the Fock space H’, namely,

n{+1mod2,n9—1 n11+ 2 y 12, 122, 1

\%

¢t = f+ + 2b fz + 4512512f1 ) (3.21)
= bt — 2005011 — biybia — f3 f1 + 265 fifa, (3.22)
93 = [+ )b b (67 4+ 6™) + 0T B(5 — 6 + B (3.23)
I<m
ot
Lif =0 (3.24)

1
— —f1+b11—§f2+b12— (b+ b11 +b 612 — b+b+h1) f1+( b+—b;2b12) fz, (3.25)
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1
P = = f b — S o = 2 (bhobas — ST 1+ 0Tb+07) o (3.26)
+2 (kY = h? —bTb) by — (b b12 + 4bfybao) f1,
1 1
o (bflbn + bf2b12 —bth+ f1+f1 + hl) bi1 — §b+b12 + Zbégb%z (3.27)

1
+§f2+f1b12 —2b" fof1,

: 1
2 = 2|37 (205ba + ffi B) + bbbz + 5 (Fb+ A2 =R bhi (3.28)

1 1 1
+ <bf2b12 - —b+> bas + §f2+f1b22 + §f1+f2b11
(b+b + b 511 + b b22 + h2) fof1,
1
U = (bhbos + g1z + 570+ fi fo+ W) b + 5 (70 + 17 = 1) biab (3.20)

] =

ybh0Re + 5 fabis + bibiafaft
' = (' — h* —bTb) b — b bio — 2b75b00 — £ f2 — 261, fofi . (3.30)

Note that the additional parts E'*, E~'* do not obey the usual properties
(B £ B, (3.31)

if one should use the standard rules of Hermitian conjugation for the new creation and
annihilation operators,

(bi)" =0bf, T =b", ()T =S (3.32)

To restore the proper Hermitian conjugation properties for the additional parts, we change
the scalar product in the Fock space H’ as follows:

<¢/1’\I/2>new = <¢/1’KI’\I/2>7 (333)

for any vectors |¥1),|W¥s) with some, yet unknown, operator K’. This operator is deter-
mined by the condition that all the operators of the algebra must have the proper Hermitian
properties with respect to the new scalar product:

(U1K B W) = (Uo| K'E[U1)*,  (W1]K'g5|T) = (| K'gg|01)". (3.34)

These relations permit one to determine the operator K’, Hermitian with respect to the
usual scalar product (| ), as follows:

(L)
1 n n
k=22, 2= % Y | v b (335)
(fl1m m)=(0,0) 72 =(0,0)

where (7},,)! = n11!n12!ngg!. One can show by direct calculation that the following relation
5n1+2n11+n12 n n2+n12+2n22+n

w042 4t 1 On9 42 For low pairs

. 10 =1 I |=0 =
holds true: V<nk,nlm, |nk,nlm,n>v ~
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of numbers (n? + 2n11 + ny2 — n,ng + ni12 + 2n92 + n), with n,n;; being the numbers of
“particles” associated with b, b;; for i < j (where b+ reduces the spin number s; by one
unit and increases the spin number s9 by one unit simultaneously) and ng being the number

of “particles” associated with f,j , the operator K’ reads

K’ = 10)(0] + (h* — h2)b7(0)(0]b — 20 £+ [0)(0] f: + 245 [0){0](h* — B2)b
IO 10) (0] (26/1(A2 = W) (R = 1) + 2/5(h — 2))

1 1 |
5510001 (Fbaz(h' + h?) + fofih? + Shub(h? — h')) + b [0) (0]bs

1
55,6710} (0] (buab(h! — A%)(h = 1) + Sbis(h = hY) + 2fof1(h? = b))
+f£10)(0) (4f2f1(h2h1 B2 — A1) 4 bioh? + 2b11b(h? — h1)> Fo.. (3.36)

This expression for the operator K’ will be used later in constructing the examples of
section ff.

Thus, we have constructed the additional parts o, (B-21])-(B.30), for the constraints
0q. In the next section, we determine the algebra of the extended constraints and find the

BRST operator corresponding to this algebra.

4. The converted superalgebra and the BFV-BRST operator
The superalgebra of the converted operators Oy,
O[ — (Oaa Op), Oa = Oq + O:p Op =0p, Op € {th lO,li?lj}7 (41)

has the same form as the superalgebra of the initial operators oy, and therefore it is de-
termined by the relations of table [ under the replacement o; < Oj. Despite the fact
that the operators H’ do not belong to the constraint system, and in order to provide a
Lorentz-covariant description of BRST cohomology spaces, we do not impose the restric-
tions H|x)der = 0 on the vector |X)qef, being the vector |®) (B7]) enlarged into the tensor
product of the Fock spaces Hget = H @ H’,

ki Kim k + +1 +v ki1koki1ki2kaok
|X>def :Z(f;r) (bltn) 1 (b+) a; po a, k10 a;rm .. ay k20 X(;),flol,l(z/;;? (x) |0>, (4.2)
ka

and include H' into the converted first-class constraint system, with respect to which we
construct the BRST operator @'. The sum in ({.9) is taken over kjq, ki, k, running from
0 to infinity, and over k;, running from 0 to 1 for ¢ = 0,1, I, = 1,2, I < m. Having
constructed @', we extract from it the operators H’, enlarged by means of the ghost
variables C,P up to new operators o', o' = (Hi —h4+0 (CP)), which will be used to
describe, by virtue of the equations (¢! + h?)|x) = 0, the direct sum of the Fock subspaces
H(ny,no) Of a definite generalized spin s = (n1 + %,ng + %) in the enlarged Hilbert space
Hiot = H® H' @ Hgp, for |x) € Hiot. In this case, the remaining operator @, independent
of the ghost variables 77%_[, 73;{ associated with H?, in Q' = Q+ O (77%_[, 73;_[), is covariant and
nilpotent in each space H,, n,) for the converted constraint system Oy without H'. Then,

- 12 —



substituting instead of the parameters —h’ the operators o’, we obtain a nilpotent BRST
operator in the complete space Hioy without 77%_[,73%{, which encodes the superalgebra of
the converted constraints {O;} \ {H’} for fermionic HS fields with two rows of the Young
tableaux.

The construction of a nilpotent fermionic BRST operator for a Lie superalgebra is
based on a principle similar to those developed in [#4, f5]: see the general analysis of the
BFV quantization in the reviews [BJ—Bg]. Following the prescription of [B4], the BRST
operator constructed on a basis of the superalgebra presented in table [[] can be found in
an exact form, with the use of the (CP)-ordering of the ghost coordinate C! and momenta
Pr operators, as follows:

Q' =0/1C" + %cch FR PR (—1)5Or)Fe©) (4.3)

with the constants fl{(] written in a compact z-local representation, {Or, O] = fl{(]OK,
and, according to table I, @' has the form

Q = a0To+a; T’+T+q’+noLo+v7fL’ Lin' +nt L™+ L g™+t T+ T n+niH;
+i(nq" — 77 g )po + (777-(%' + g )pt + (e +nta )pz

— (g — 0" )Po — u(24' ¢ — min™)Phy + (i +nifn' — 2q0q )P
+ (nimy, + n* " — 2g0q" )7’+ + 20kt — @) Pii + 20ty — )P

1
-2 [5(77711 +03)me — 0 a2 — i + 2CI1C]2] P+ 0 maP + nmiaPa

1
+2 [ (¢ + mimis — ntnf, — iy — 247 43 ] Pia — iy P11 — 00y Paa

oy (Ph = PR) + Jmilame (Pl + P3)

1

1
+ 577157711 + 5?7;2?712 —2q1q5 + (03, — nﬁ)n*] P
1 1
+ | gl + 5mime — 20241 — (73, — n%{)n} 28
[ 1 _ Lo+
+ 2C]17712 n Q1 p2 + Q1 m2 — nqi + 2(]27712 ngs | P1
1 1
- 56137712 - 77+Q2} P+ [2?712772 — 03 } Py + [ Ny ma +1 772] Py
1 1
+ | 5mam = n*nf] P+ [577??712 - mn] Py (4.4)

Here, we imply summation over the repeated index i, and the raising (lowering) of the
indices 4, j in quantities % is made by the two-dimensional Euclidian metric tensor g%
(9i), 9" = diag(1,1). The quantities qo, i, ¢;" and no, n;", mi, mf, s 1, 07, iy are,
respectively, bosonic and fermionic ghost “coordinates” corresponding to their canonically
conjugate ghost “momenta” pg, p;r, i, Po, Pi, P;r, Pim, Pi, PH, P, 73 for i,l,m =

m>

1,2, I < m. They form a set of Wick ghost pairs, {(qi,pi ), (pz,ql- ), (UZ,P;F), (Pi,n;r),
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(nlma,PlJyrn), (le’n;;b)’ (77’73+)a (73,77+)}, and a set of zero-mode pairs, {(QO,PO)a (770’730)’
(77%.1, P;_[) } Following [B4], they obey the nonvanishing (anti)commutation relations

Py ={P} =0, P} ={Pin/ =1, {um. P} ={Pim.n} =1, (4.5)
9,01 = [ping ] =1, [90, po) = {10, Po} = {n, Phy} = 1;

they also possess the standard ghost number distribution, gh(C?) = —gh(P;) = 1, providing

the property gh(Q') = 1, and have the Hermitian conjugation properties of zero-mode

i D
pairs,

A - A A
(QO777077731719077DO,7)%-[) = (QO7770777;-171907_7)07_7D%{) . (46)

The property of the BRST operator to be Hermitian is defined by the rule
QK = KQ, (4.7)

and is calculated with respect to the scalar product ( | ) in Mo with the measure d?z,
which, in its turn, is constructed as the direct product of the scalar products in H, H’ and
Hgyp. The operator K in (@) is the tensor product of the operator K’ in ‘H' and the unit
operators in H, Hyp

K=10K &1, (4.8)

Thus, we have constructed a Hermitian BRST operator for the entire superalgebra of
Or. In the next section, this operator will be used to construct a Lagrangian action for

fermionic HS fields of spin (si, s2) in a flat space.

5. Construction of Lagrangian actions

The construction of Lagrangians for fermionic higher-spin fields in a d-dimensional
Minkowski space can be developed by partially following the algorithm of [@], which is a
particular case of our construction, corresponding to no = 0. As a first step, we extract
the dependence of the BRST operator Q' ({.4) on the ghosts 77% %i, so as to obtain the
BRST operator @ only for the system of converted first-class constraints {O;} \ {H'}:

Q = Q+ni (ot + hY) + APL, (5.1)
where
A . A 1 A A
A = 2{772- mi = 20ig; + " (67— 0") + Jniyma (8 + 5’2)}- (5.2)

5In terms of the redeﬁnitior@pi, Po, 773.1) — 1 (pi, Po, 73%), the BRST operator (Q) and relations (@)
)

are written in the notation of
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Q = qTo+ ¢ T + T g + noLo + i L' + Ly’ + nf L™ 4+ L ™ 4 T + Ty
+i(n @i — nia; )po + niaai o+ nfaip — i(ag — i ni)Po + (nEni — 2q0q ) Pi
+(n i — 2000:)P; — 24P — 24} P,
=2 [2q1q2 — 1 m22 — ] Pih + 0 2P 4 nmiaPay
—2[2¢7 g3 + 0Ty + ] Pra — P — n 0 Paz

1 1
—Tgama — 2(11(1;] P+ [—

5 Qnﬁmg +

1 1
+ §?7IL2?711 + §?7IL2?722 - 2(12(1?} Pt

1 1
+ §q1n1+2 - n*qf] P2+ [5

1
a7 ma — 77Q1:| Py + [iqznﬁ - nqﬂ n

1 1
+ 56137712 - n*qQ] i+ [577?2772 — } Py + [ nyma +1 772] P

1 1
+ 577IL2?71 - ?7+77f} P + [5

e — mn] Py, (5.3)

The generalized spin operator o' = (o!,0?), extended by the ghost Wick-pair variables,

has the form

o' =H — b+ qp + g pi — P+ 0P — 20uP5E 4 20 Py
(0" + ) Iy Pr2 — maPih] + (67 = )™ P — nPH]. (5:4)

Second, we choose a representation of the Hilbert space permitting us to find the BRST
cohomology spaces for the first-class constraint system,

(p07Qi7pi77)07p’€-{7niapi7nlm77)lﬂ’u777p) ’0> = 07 (55)

and to extract from Hio the Hilbert subspace that does not depend on the 77%_[ operators
(since H® are not first-class constraints as the other Oy),

)=3=(00) (a7 ¥ (B )R (o) o ()Mo (g Yhor (P YK (g, Ko (P, o (o 10 (Pt ¢

kr

12 + +u +v kika;...k
()55 (120l 0 e e (2)0), (5:6)

The sum in (5.) is taken over ki, koj, ki, k2
i,I,m,n,o0 =1,2, ] < m,n < o, and over the other indices, running from 0 to 1. Next,

k13, k14, k15, running from 0 to infinity, for

no?

we derive from the equations determining the physical vector, Q'|x) = 0, and from the
reducible gauge transformations, §|x) = Q'|A), 6|A) = Q' |AMW), ..., §|AE—D) = Q/|AG)),

a sequence of relations:

Qlx) =0, (o' +h")|x) =0, (e,9h) (Ix)) = (1,0), (5.7)
Slx) = QIA), (0" +h")|A) =0, (e,9h) (|A)) = (0,-1), (5.8)
oAy = QIAM), (" +hHAD)y =0, (e,9h) (1AM)) = (1,-2), (5.9)

SIACT) = QIAD), (o' +h)AW) =0, (e,gh) (JAW)) = (s,—s—1).  (5.10)
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The middle set of equations in (5.7)—(5.10) determines the possible values of the parameters
h' and the eigenvectors of the operators o’. Solving these equations, we obtain a set of

|A>(n1,n2)a sy |A(8)>
d—4

eigenvectors, |x) n1 > ng > 0, and a set of eigenvalues,

ni,na2)r (n1,n2)1

—h =n'+ —6%2. i=1,2, ni€Z,nseNg, (5.11)

with (n1,n9) related to spin, s = (nq,n9) + (1/2,1/2). The values of ny,ng are related to

the spin components s1, so of the field, because the proper vector | X>(n1,n2) corresponding
0---0

(1)ny(V)ny ] o )
operators, which corresponds to the field @(M)nlv(y)w (z) with the initial value of spin s =

to (hi,h2) has the leading term y (z), independent of the auxiliary and ghost

(s1,82) in the decomposition (B.4),

+ Hiiny +ny 0:0
1X) (n1 n2) = {al e Mag™ L ay 2X(N)”17(”)n2 (x) (5.12)
n + tVny—1_0---01
A I (/5 MR W C)
ny—1,+ tny—1 0---0100
—i—bﬁaﬁul .oathm Las Lo a, ? X(ﬂ)n1—17(y)”2_l(x) +.. ] |0),

where the values of (n1,n2) can be composed of the set of coefficients {k, }\ {k1,k4} in (F£.6)
by the formulae

n; = koi + ki + ksi + kei + kri + 255 4+ kS5 + 2k + kD, (5.13)
2k, + ki5 + (=1) (k1o + k11 + k13) + k146i1 + k15042 -

Therefore, relations (b.7)—(b.1() guarantee both the extraction of vectors with the required
value of spin and the nilpotency of ) in the corresponding Hilbert subspace. If one fixes
the value of spin, then the parameters h' are also fixed by (p-11). Having fixed the value
of h?, we should substitute it into each of the expressions (.7)-(b.10).

Third, we should extract the zero-mode ghosts from the operator () as follows:

Q = qoTo +noLo + 2(n; gi — miq; )po — 2(ad — 0 ni)Po + AQ, (5.14)

where
To = To — 24, Pi — 24P}, (5.15)
AQ = ¢/ T+ T ¢ +n L' + L+t L™+ Lf '™ 4t T+ THy (5.16)

i P+ i+ P+ Pl — 207 Pi — 267 P

—2[2q1g2 — 022 — i1 Py + nT 2Py + Py
=2 [2¢f g3 + 00y + 1) Pra — mmiy P — 0 iy Pas

+ %771*27711 + %?ﬁgmz - 2q1qﬂ P+ [%mﬁmz + %771*27722 - Q(MT] P
+ :%QIUE - n+qﬂ po+ qumz - nq1] ps + Ecmﬁ - 77612*] P

+ :éqimz - 77+(J2} P+ anm - 77772*] P+ Bnimz + U*Uz} P!
+ :%771*2771 - 77*?7?] Py + Bnimz - nm} Py .
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Here, Ty, AQ are independent of qo, po, 1o, Po. We also expand the state vector and gauge
parameters in powers of the zero-mode ghosts:

) =Y a5(1x6) + molxt)), gh(xi)) = —(m+k), (5.17)
k=0

IAC)) = iqé“(m(s”& +nolADF)), gh([ADE)) = —(s + k+m +1). (5.18)
k=0

Following the procedure described in [P4, 4], we get rid of all the fields except two, |x3),
IX0)-

Namely, after the extraction of zero-mode ghosts from the BRST operator @ (5.19),
as well as from the state vector and the gauge parameter (p.17), (p.1§), the gauge trans-
formation for the fields |x§), k > 2 has the form

0x6) = AQIAG) +minm; |AT) + (k + 1) (i, — mg,")IAGH) + To|Ag™) + [AT%), (5.19)

implying, by induction, that we can make all the fields |X]5>, k > 2 equal to zero by using the
gauge parameters |Alf> Then, considering the equations of motion for the powers qlg k>3
and taking into account that | XIS ) =0, k > 2, we can see that these equations contain the
subsystem

A2 = mntIxg), k>3, (5.20)

which permits us to find, by induction, that all the fields |X]f>, k > 1 are equal to zero.
Finally, we examine the equations of motion for the power q%:

X)) = —Tolx) » (5.21)

in order to express the vector |x{) in terms of |xj). Thus, as in the totally symmetric case,
there remain only two independent fields: |xJ), [x3). The first equation in (5.7), (F-14), the
decomposition (f.17), and the above analysis then imply that the independent equations
of motion for these vectors have the form

1. -
AQIxo) + H{To,mnitxo) = 0, (5.22)
Tolx9) + AQIxg) = 0, (5.23)

where {F, G} = FG + GF for any quantities F,G.
Then, due to the fact that the operators Q, T, 77i+ n; commute with ¢!, we obtain
from (5.29), (5.29) the equations of motion for the fields with a fixed value of spin:

1 -
AQIX0)n1.na) + 5 { L0, 11 X0 11 m) = 0 (5.24)
TO‘X8>(”1,”2) + AQ’X(l)>(n1,n2) = 0. (5'25)
where the fields | X’5>(n17n2), k = 0,1 are assumed to obey the relations

Ui‘X]g>(n1,n2) = (nz + (d - 4)/2 - 25i2)‘xlg>(n1,n2) ) k= Oa 1. (5'26)
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The field equations (5.24), (5.25) are Lagrangian ones and can be deduced, in view of

the invertibility of the operator K, from the following Lagrangian action:%

- ~ 1 - ~
S(nl,ng) = (nl,nz)<X8‘K(n1,ng)T0’X8>(n1,n2) + 5 (nl,n2)<X(1]‘K(n1,n2){T07nz‘—’—m}‘X(1]>(n1,n2) 5

+(n1,n2)<>28’K(m,HQ)AQ’X(l)>(n1,n2) + (nl,nz)<>2(1]’K(m,n2)AQ’X8>(m,n2) ) (5'27)

where the standard scalar product for the creation and annihilation operators is assumed,
and K(,, ,,) is the operator K ([L§) with the following substitution: h* — —(n; + (d —
4)/2 = 26;2).

The equations of motion (5.24), (5.25) and the action (5.27) are invariant with respect
to the gauge transformations

1. .
5’X8>(n1,n2) = AQ‘A8>(n1,n2) + §{T0,77;L77z}\/\é>(n1,n2) ) (528)

5|X(1)>(n1,n2) = T0|A8>(n1,n2) + AQ|A(1]>(711JL2) ) (5'29)

which are reducible, with ‘the gauge parameters \A(s)@(mm), 7 = 0,1 subject to the same
conditions as those for |X{)(n, ny) in (b.26),

1. =~
5|A(8)8>(n1,n2) = AQ|A(S—i_1)8>(m,n2) + §{T0an;rni}|A(S+1)é>(n1,nz)’ |A(O)8> = |A8>’ (5'30)
SIACE) 1 may = Tol ATV () + AQIAGHIYY A5 = 1A5), (5.31)

>(n1,n2
and with a finite number of reducibility stages’ at Smax = n1 + no for spin s = (nq +
1/2,n9 +1/2).

In addition to restrictions (f.13), the set of coefficients {k, } \ {k1, k4} in (5.6) for fixed
values of n;, satisfies the following equations for | X%>(n o) | A(S)J0>(m’n2), respectively:

‘X%>(n17n2) : Z (kzi—k?,z‘—i-kﬁi—kn)—i-z (kfm—klgm)—i-klo_ ki1 = -7, (5'32)
A I<m

ASY Y gy = D (ki =it ki —kre) + Y (ki — ki) Hhio— ki =—(s+j+1), (5.33)
7 <m

due to the ghost number distribution (5.17), (5.19).

Thus, we have constructed, by using the BRST procedure, a gauge-invariant La-
grangian description of fermionic fields with a mixed symmetry of any fixed spin s.

A Lagrangian description of a theory with a half-integer mixed-symmetry HS field
of mass m in a d-dimensional Minkowski space is deduced by dimensional reduction of a
massless HS field theory of the same type in a (d 4 1)-dimensional flat space RY?. To this
end, we have to make a projection R — RM1 with a simple decomposition,

oM = (0", 1m) aM = (al',b;), aM+ = (aé”,bj), AM — 3*,5), (5.34)

3 (2

M=01,....d, p=0,1,....,d=1, 7™M =diag(1,-1,...,-1,-1), (5.35)

5As usual, the action is defined up to an overall factor.

"In the case of a spin-tensor field P (1)) (Vg s (o), () With the Young tableaux having k rows, one

can show that the stage of reducibility for the corresponding Lagrangian formulation must be equal to
Smax = Zle n; + k(k —1)/2 — 1, so that for a totally symmetric field D), (z) one has smax = n1 — 1, in

accordance with [{4].
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whereas the quantities 477, identical with Ty for massless HS fields, transform, for massive
fields, as yTpy = T, Ty = —1y*0,, — m. Thus, for the coefficient functions entering with
ni,n2)> ’A(()S)j> the
homogeneous part of a vector \E>(n17n2) with respect to y-matrix is subject to

Y-matrix into the decomposition of any vector composed of lxé>( (n1,m2)s

Moy [E) = (10, — (~)* 5 Fm)|2), degsB) = 0,1, [E) € {d), [A5)} . (5.36)

Relations (5.34), (b.39) indicate the presence of four additional second-class constraints,

l;, l;r , with corresponding oscillator operators b;, bj, [bi, b*] = 0,4, in comparison with the

massless case.® ’

A simultaneous construction of Lagrangian actions describing the propagation of all
massless (massive) fermionic fields with two rows of the Young tableaux in Minkowski
space is analogous to the case of totally symmetric spin-tensors in flat space [{4], and we
only note that a necessary condition for solving this problem is to replace in @', ), K the
parameters —h’ by the operators ¢’ in an appropriate way and discard condition (5.2€)
for the fields and gauge parameters. Among other things, this completes the conversion
procedure for the initial constraint system {o;} \ {g}} and the construction of a nilpotent
BRST operator in the entire Hilbert space for the set of converted constraints {O;}\ {H'}.

In the next section, we shall sketch a proof of the fact that the action, in fact, repro-
duces the correct equations of motion (R.2)-(R.9).

6. Reduction to the initial irreducible relations

Let us briefly show the fact that it is only the solutions of the equations of motion (2.2)-
(1) that determine the space of BRST cohomologies of the operator @ (b.J) with a
vanishing ghost number in the Fock space H for the basic fermionic field with spin s =
(n14+1/2,n2+1/2). To solve this problem, we can follow two ways: the first one is realized,
for instance, in [P for massless totally-symmetric bosonic fields in a flat space-time, and
the second one, for totally-symmetric fermionic fields [i4, 5. We will use the technics
of [, ], taking into account the fact that the spectrum of component fields for an
arbitrary vector |X)(n, ny,) in (B.6) for k1 = kg = 0 is essentially larger than the spectrum
for a totally-symmetric fermionic vector [X) (s, n,,0), for whose description one should not
use the operators q;, p;, 2+, 77;, 732+, 7715, 73{5, 77;_2, 7322, nt, PT, bt be, b;‘z, a;'” and the
corresponding conjugations.” As a consequence, the character of proof is more involved
even in comparison with the case of the AdS space [[].

In the standard manner, the proof consists of two steps. First, in order to simplify the
spectrum of the gauge parameters |A(5)6> and the fields |X%>, j=0,1, we apply to them a

80n a basis of the above arguments, one can state that the procedure of dimensional reduction given
by relations ()7 (p.35) can be applied to massless mixed-symmetry bosonic fields [E] in order to obtain
a Lagrangian description of massive mixed-symmetry bosonic fields, whereas for fermionic HS fields it is

necessary to add egs. (), Cft. @]

9The total number of independent “creation” operators which are necessary to compose the vector
[X) (n1,n5) 18 more than twice as large as the number required for |X) (n,+ns,0): (2d +22)/(d + 8).
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gauge-fixing based on the structure of gauge transformations (f.28)-(b.31)) and extract the
physical field |®),,, ,,,) alone, by using (.7) for s = (ny +1/2,n2 + 1/2):

=0. 6.1
C:P:bjj:bJr: fr=0 (6.1)

|X8>(n1,n2) = |(I)>(n1,n2) + |¢A>(n1,n2)a |¢A>(n1,n2)

Second, we use a part of the Lagrangian equations of motion (f.24)), (5.29) in order to select
from them only the equations of motion for [®),, ,,), and to remove all of the remaining
auxiliary fields of lower spins.

Let us now describe the basic sequence of gauge-fixing. Our strategy consists in a
successive elimination of the terms with P;; from the fields ‘X6> and gauge parameters
\A(S)6>, starting from the top of the tower of gauge transformations (f.2§)—(p.31). For this
purpose, it should be noted that we have a reducible gauge theory of (n; + n2)-th stage of
reducibility. Because of the restrictions for the spin (5.13) and ghost number (5.32), (5.39),
the independent parameters of the lowest stage have the form

Attty = D) AT PP 0mey - AT G =0, (6.2)

where the vector |A(p;r, P, P tng—m) = |A>(l,n27m), [ < n1, m < ng, has the structure

n2
) s :7>+{ S D) ) et (6.3)
k=m+1
no—1
+Pf Z(pii—)k(p;—)mikil‘W%l>(fk+l,k—m)
k=m
no—1
+Py Z (P ) (3™ M wl) (—hth 1k —1—m)
k=m+1
ng—2
P Y <p1+>’f<p2+>"2—’“—2|w,§l>(_k+l,k_m>} .
k=m

It can be verified directly that one can eliminate the dependence on the ghost 731+1 from
the gauge function |A("1+"2_1)8> of (n1+mng—1)-th stage of reducibility, whereas the vector
|A(m+nm2=D1) has the same structure as [A™1F72)0) in (B3). Indeed, for |AM1+2710) we

have the following expansion in the powers of Pj;, Py, Py

|A(n1+n2_1)8>(n1,n2) = |A(n1+n2_1)80>(n1,n2) + ’PlJrl(pIr)nl_zL’ZD(O,nz) s

+PHE)™ A 0ne-1) + P07 A (0ns-2),  (6.4)

with |f~1>(0,n2,k) defined according to (£.4), so that the gauge transformation (5.30) at Py}
implies

81 A) (0mz) = =243 (P 4) (0ns) - (6.5)
After the vector |/I>(0,n2) has been removed, the theory is transformed to a theory of
(n1 + ng — 1)-th stage of reducibility. Then, it is possible to verify that one can remove

the dependgnce of |A("1+"2_2)%> on 731+1 with the help of the remaining gauge parameters
|A(mFn2=D7) "wwhich do not depend on Py.
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It then becomes possible to prove by induction that after removing the dependence on
Py} from the gauge parameters up to the (s + 1)-th stage, |A(l)]g>, k=0,1,1>s+1 (ie.,
we have 7711|A(l)]5> = 0), and applying the restricted vector |A(5+1)lg>, one can eliminate
the dependence on P;; from the gauge functions |AGs k> To this end, we introduce the
following notation for the gauge parameters related to their expansion in the ghosts 73+

)
|A( It Z Oz] + Pll <P12|A((]1 >
1<j
Dk Ok Dk
+7)22‘A() ) + 7)127)22‘/\() >) + 7)127)22‘A() ) - (6.6)

Here and elsewhere, we omit the vector subscripts associated with the eigenvalues of the

operators o' (5:26). From (B-30), (F-31), we obtain the gauge transformations for ]Aosl)lk>
\Aé‘;)k% p =1,2,3, being the coefficients at 7711, namely,

SIAGYY = —2a31A5 ) + 1Al (6.7)
SIAST) = —2g3 A5V, (6.8)
SIAG"Y = —2a3IA5 M)+t IAGTYR) (6.9)
SIAGY) = 242 A5V, (6.10)

Then, a certain choice for |A (s 1)k ) |A05f2r1 ) removes |A(()§)k>, |A(()sl)k>, respectively, whereas
a certain choice for |1ng;2rl )y |A s+1)k> eliminates |A(()82)k>, |A0811k> by means of the remaining
gauge transformations. Thus, we have shown that the dependence on 731+1 can be eliminated
from |A(l)]g>. As a consequence of the above procedure, the theory becomes a gauge theory
of [-th stage of reducibility.

This algorithm is valid down to the vector ]A("2+1)’§>, when there arise terms linear in
pf. When these terms are present, one deals with gauge parameters that have remained
unused after eliminating the dependence on 731+1. Therefore, in view of the nT-dependent
terms in (B.7), (6.9), a gauge transformation with such parameters may cause some Pj;-
dependent terms to appear in the transformed vector |A("2)]5>. Consequently, it is necessary
to make a gauge transformation with parameters linear in pf, or independent of it, before
removing the Pfrl—dependence. Let us examine a gauge transformation with the gauge
function |[A(2)k) more carefully.

Suppose that the dependence on the ghost 7311 in [A "2+1)k> has been removed by
a gauge transformation, and hence the functions |[A2+DE) |A(2)k) admit the following

representation:
|A(n2+1)0> =P (|A(n2+1)0 )+ 7312|A((ﬁ§+1 ) + Py P22|Aog§+1) >> ’ (6.11)
ACEIE) = (o +>2(\A<"2+1>3n> +7>12\Aé’1‘3“”> FRPHAGTY) . (612)
AR = [N + S PEAG), (613
i<j
[AC)g) = pf(W"% + PhIAGE" + i P IAGEY) (6.14)
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where the vectors |A(l)80> |A0”> l =mno,mno+1, 14,5 =1,2,9 < 7, possess terms hav-
ing no dependence on pj, except for |Aég§)0>, and the vectors in (.14) have a structure
analogous to the corresponding structure in (B.11). Then, one has to make a transforma-
tion with parameters linear in pf. We will use \A(”2+1)00> \Agf?”% to make such gauge
transformations. Since

SAC20) = T A=) JAC=H00 = g A2 D0 (6.15)
3IAGE )y = Ty Al A0y = g ALz Ty (6.16)

one can use the vectors \A(”QH 0)s ]AJBH)% to eliminate the dependence on b}, and

fi7 from |AM2)0) and |A012) ), respectively, due to the fact that the bf;- and f; -linear
components of the latter vectors are identical to the corresponding components of the
previous vectors. As a result, we obtain the gauge-fixing

bll’A(n2)80> fllA " 00> - bll’Aom > fllem > =0, (6-17)

and then remove the P;;-dependence from \A(”2)6>, as has been described in the case of
the system (b.7)-(6.10).

Proceeding by induction, we may use the algorithm which has been applied to the
treatment of the vectors (6.13), (p.14) in order to eliminate the dependence on 7311 related
to all the vectors down to |[A(?)]), whereas the Pyy-independent terms in |A®) > for I > ngy
are restricted by relations of the form (f.17).

Let us now turn to the gauge-fixing of the fields. We expand the fields in the powers
of the ghosts 73;;» by analogy with the gauge parameters:

IX6) = Ix60) +Z |Xow +7311<7312|X01>

1<j
+P5Ixb) + PHPE ) ) + PhPHIxE) (6.18)

Further, we need to restrict the vectors by the gauge conditions (6.17), which follow from
the gauge transformations, and then we eliminate the terms coupled to 771+1.
Having completed the above procedure, we briefly mention that the remaining gauge

ambiguity is sufficient to eliminate the auxiliary oscillators bJr bt f; * from the field | X090,

1
X6 = 2 D )P )™ xeg™) (6.19)

1;>0m;=0

00000>)

and therefore, in view of gh(]x = 0, this field has no dependence on the ghost

“coordinates”, so that, after the gauge-fixing, we conclude
xoo ) = |@). (6.20)

The second step of establishing an equivalence of equations (R.3)-(R.J) with the La-
grangian equations (5.24), (5.29) is more involved and is based on a detailed expansion of
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equations (5.24), (5-29) in the powers of p, ¢, n", 772], nT and then in the powers of bw’
f;7. We only state the result that after gauge-fixing | xbo) and |x&1o) [xEss)s [XE,), expanded

by analogy with (6.19), the only independent equations among (5.24), (-25) have the form
to| @) = t;|®) =t|®) =0, (6.21)

and all of the auxiliary fields can be made equal to zero.
In what follows, we consider some examples of the Lagrangian formulation procedure.

7. Examples

Here, we shall realize the general prescriptions of our Lagrangian formulation in the case

of fermionic fields of lowest spins.

7.1 Spin-(3/2,1/2) field

In the case of a field of spin (3/2,1/2), we have (n1,n2) = (1,0), (h!, h?) = (1—d/2,4—d/2).
Since smax = 0, the corresponding Lagrangian formulation is an irreducible gauge theory
and describes a totally symmetric fermionic field of spin s = 3/2. The nonvanishing fields
IX0)(1,1) and gauge parameters [Af) (1 ), (for [Aj)1,0) = 0, due to gh(|Af)(1,0)) = —2), have
the following Grassmann grading and ghost number distribution:

(:9h) (IXd) 1.0)) = (1, =4, (€:9h) (IA8) (1,0)) = (0, —1). (7.1)

These conditions determine the dependence of the fields and gauge parameters on the
oscillator variables in a unique form, with the help of the operators corresponding only to
the first row of the Young tableaux,

Do) = [—iar vu(@) + fe@] 10}, oo = [PTix@) +pfa@)]10),  (7.2)
a, 0) (X0 = (0] [ (x)al + o (2)7 1] 72, (1,0)()2(1)| = (0| [xT(@)7P1 + xi 1] 7% (7.3)
1A (10) = [P €1 (@) + pi Aéa(2)] [0), (7.4)
Substituting (.2), (F.d) into (5.27), we find the action (up to an overall factor) for a free
massless field of spin (3/2,1/2) on a flat background:
Sao = [t [#{iv o, - 9} + (@ - 20 {00 +
+>Z{i'y“0ux — X1+ 0"} + Xl{iv“wu +(d—2)y — x}] : (7.5)

In deriving the action (f.§), we have used the expressions (B.36), (E.§) for the operators
K(1,0)-'° A substitution of (F-3)-(F4) into (5-2§), (F29) permits one to find the gauge

OFor ny = 0, we have the case of totally symmetric spin-tensors in a d-dimensional flat space [@]7

so that the total Hilbert space Hiot and all of the operators acting on it can be factorized from
ar,nd,nl, nd, T, g2, m2,mi2,me2,m, fo, b, b1y, b7 and their canonically conjugate operators. In the
expressions for the action () and the sequence of gauge transformations (p.28)—(p.31)), we must
set n2 = 0 and use the above restrictions for Hiot. In particular, the operator Kénl,O) has an ex-

act form [@]7 Kl o) = Yonyi—o 7T o (|n11><n11|C’(n11,hn1) = 2ff Inu1)(nu|f1 C(nar + 1, hny) )7 for
C(n,h)=h(h+1)---(h+n—1),C(0,h) =
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transformations (.2), (p.29) in the form

51/}u - Mé.l + Z"Yué.Qa 51/} - 527 5X = Z‘Pyuaué.l - 2527 5X1 == _i7H8M§2' (76)

Let us present the action in terms of the physical field v, alone. To this end, we get
rid of the field ¥ by using its gauge transformation and the gauge parameter . Having
expressed the field x by using the equation of motion x = iv#1),,, we can see that the terms
with the Lagrangian multiplier x; turn to zero. As a result, we obtain the action

8(1,0) = /ddx{ﬁ;ﬂ’)/y lﬂ;z),u - ﬂ;ﬂ(%/a,u + Wuau)¢y + iiﬁ”%ﬁ” 07“%}, (7-7)

which is invariant with respect to the residual gauge transformation 61, = 0,&;.

To obtain a Lagrangian description of a massive fermionic field, we may use the pre-
scription (5.34)-(5.36) either from the very beginning of our treatment of this example,
i.e., starting from expansion (f.9), ([.J), or starting directly from the action (7.7) written
for a (d + 1)-dimensional Minkowski space. Following the latter possibility, for a spin-
3/2 massive fermionic field, with ¥™ = (y*, ), the Stueckelberg field being o, and with
iyMoppN = (ivt0, — m)YN, iyMoyynpY = (iv"0, + m)ynyN in view of (B:30), and
due to the relation x = iyy¥ before eq. ([[7]) and the structure of |X(1)>(170) in ([.3), the
Lagrangian reads

Ll o) = V(v 0y — m)y — @i 0y — m)p — i (7,0 + 7,00 )0”
+i7/;u(8u — imY,) e +1P(0y — imy )M + 20mep
+ ("1 + @) (i 05 + m) (Y1 + @), (7.8)

and is invariant, modulo a total derivative, with respect to the gauge transformation

Sy = 0u€, dp =mé. (7.9)

After removing the field ¢ by means of the gauge transformations, we obtain the Rarita-

Schwinger Lagrangian in a d-dimensional flat space [[H4], indeed,
Lrs = P70y — m)y — )" (7O + 30" )ty + Y (177 05 + m)y" by (7.10)

7.2 Rank-2 antisymmetric spin-tensor field

In the case of a spin-(3/2,3/2) field, we have n; = 1, (h',h?) = (1 — d/2,3 — d/2).
Since smax = 2, the corresponding Lagrangian description is a reducible gauge theory
of second-stage reducibility. The nonvanishing fields ‘X8>(1,1)7 ]X(l)>(171), gauge parameters

|AIO“>(1’1), first-stage gauge parameters |A(()1)k>(1,1), and second-stage gauge parameters (for
\A((]2)1>(1,1) = 0, due to gh(!A62)1>(1,1)) = —4), have the following Grassmann grading and
ghost number distribution:

(Evgh) (‘X6>(1,1)) = (17 _Z) ’ (€7gh) (‘A]g>(1,1)) = (Ov -1- k) ’ (711)
(e, 00) (A ) = (L —2— k), (e.9h) (IAY)(11)) = (0,-3). (7.12)
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These conditions allow one, first, to extract the dependence on the ghost variables from
the fields and gauge parameters:

X0 a1 = %)) + 77f732+|‘1’1>(0 0) + P03 [92) 0,0y + 41 P3 [¥3)(0,0) (7.13)
+01 43 [W4) 0,0y + 1 P3A¥5) (0,0) + 4 P3A%6) (0,0) + Pi a3 71%7)(0,0)
+p1 13 71%8) 0,0y + Pl %9 0,0) + 11 P 1%10) 0,0)
q Pt Fle1) 1,0) + 17 P o )(1,0) +Pin Fles) 1,0 +pin Flea),0)
+(HLPNP1>(—1,1) + quf“ﬂpﬁ -1,1) + i pi ’Y’P3>( 1,1) T N p4)(~1,1) 5
|X(1J>(1,1) = PT|X1>(0 1) +P;|X2>(1 0) + P Flx3) 0,1y + Py FIxa) (1,0 (7.14)
+P571X5) (0,0) + 41 T P AIx6) 0,00 + 11 PP AIXT) (0,0)
+4 PP |x8) 0,0y + P77 P Ix0)0,0) + 21 Pi 7 Ix10)0,0)
+(pT )0 Ix11)0,0) + PTAIX12) (2,0) + P IX13) (—1,1) 5
IAD @1 = PTIED 0. +p§7|52>(1 0) + P l€3)(0.1) + Py I€4) (1,0) (7.15)
+P51¢5) 0,0) + 41 PT P I€6) (0,0) + 77f7)1+77+\§7>(0 0)
+47 Py PHAIEs) (0.0) + 2T 0T PTAI0) 0,00 + 2T P 0t A1€10) (0,0)
+(T )0 1€11) 0.0y + PHIE12) 2,0) + Pi1€18) (—1.1
\Aé>(1,1) = pip3 M) 0,0) + PP 1X2) 0,0) + Pips 1X3)0,0) (7.16)
+PPFAIA) 0,0) + PP AIAs)0,0) + Pr PTA1A6) (1,0
+pfPH A 0 + (0F)A1As) (1) + 0 Py \)\9>( 11

!A(()l)0>(1,1) PP ’51 >00 +p1 Py 7’52 )(0,0) + Py py 7‘53 )(0,0 (7.17)
+P; P lef! >(oo>+7>117>+\§5”>oo + PP >1,
+p PHAE ) a0y + 0)21E7) oy + T PFAIEY ) 1)
40" = @GPPI >(0 o+ PEPT )00 (7.18)
AP @ = G1)PHED) 00 + P PEPHAIED ) (0.0 - (7.19)

where the coefficient fermionic fields and gauge parameters in the right-hand side of equa-
tions (FI3)~([1J) arc independent of ghost operators. The bra-vectors (11)(X§| corre-

sponding to expansion ([.13), ([:14) have the form

a0l = @ (P + 0,0)(T1]Pam1 + (0,0) (T2l P1 + (0,0)(P3lq1p2 (7.20)
+0.0)(Walazp1 + (0,0)(¥5[TP2m1 + (0,0) (V6 |7P2a1 + (0,0) (P72
+(o,o)(‘i’8|1772p1 + (o,o)<‘i’9|777’11 + (o,o)<‘i’10|737711
+1,0(P1APq1 + (1,0)(P2IPm + (1,0){@3|1P1 + (1,0)(Pal¥01
+1y(plpiar + (<1, (P217P1a1 + (—1,0)(p31AP1im + (—1,1)(Pal P

1)Kol = 1) (X1lp1 + (1,0)(Xalp2 + (0,1) (X3[7P1 + (1,0)(Xa|FP2 (7.21)
+(0,0) (X5 YP12 + (0,0) (X6l 7PP1a1 + (0,0 (X7[TPP1m
+0,0)(X8PP1a1 + (0,0 (X0 P11 + (0,0) (X107 P1P1
+0,0) (X11137P% + (2,0) (X127P + (—1,1)(X13[7P11 -
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Substituting (7-13), ([7.14), ([7.20), (7.21) into (5.27), we find the action (up to an overall

factor) for a spin-(3/2,3/2) free massless field on a flat background in the form of a scalar

product for vectors defined only in H @ H’,

~ 1 R
Sty = (@K {57019 + T ) + T bxa) + 321 )
+ L3 Ixa) + ALGIxs) + T [xaz) + L7 Ixas) }

~ _ 5 1~ 5
+ (1| K11 {To"l’2> — 27|Ws) — Lalx3) + 57’X5> +’Y’X7>}
~ 5 5 1~ B
(Wl {25195) + 34~ 3s) — 3 |
~ 5 1~ _ B
+ (3| K11 {To|‘1’4> = 29[¥s) + Talx1) + 571xs) — Tlxe) — 47|X11>}

~ B 1~ _
(@l ) {23109 + Tabea) + ) — o)}

(W5 K11 {=To|%7) — Tolxs) + Flxs) + 27/x10)}
(Ve K1,y {—T0|¥s) +FLa|x1) + YIx0) }
(W7 K1) {71 lx2) +Alxo) } + (sl K 1,0y {—T1lxa) + [xs)}

~ 1 5 5 5 5
(ol K(1,1) {TOI\I110> = 57Ixs) +Ix6) +3Ix7) +7Ln IX12>}

(W10l K11y {Flxs) — 49Ix11) — T |x1s)}

(P11K 1) {=Tolea) + ATIx1) — Flx2) + FLT Ix10) — 275" [x11) }
(P2l K1) {Toles) — 27]es) — AT |x3) + Fxa) + T7 Ix10) }
(B3l K 1) { =LY Ix7) + T1 Ixo) + 7L1lxa2) }

(P4l K1) {=27Ix2) — Ti Ix6) — Thlxa2) }

N 1 ) N By
(P11K (1,1 {gTo!m — 29|p3) + Tilx1) + 3T |xe) + ’Y\X13>}

(2| K 1,1y {=Tolps) + 7L1lx1) — 3T |x0) }
(31K 1,1y {—271pa) — Thlx3) — 3T [xs) }

_ 1 - - -
(PalK (1,1 {—5T0|P4> — YL1|x3) — T |x7) + 7|X13>}

+ o+ + + o+ o+ o+ o+

B B B B B 1
+ (X1l K 1,0 {=Alxs) } + (Xl K1) {=Flxa) } + (X8l K1) {—iTo\X?)}
- 1 . - . -
+ (Xal K (1,1 {—§T0|X4>} + (X6 K(1,1) {—=7Ix10) } + (7| K 1,1y {=FIx10) }

+ (Xs|K 1) {Tolx10) — 27|X11>}} +ecc., (7.22)

where we have omitted the lower spin subscripts of the component fields. In deriving
the action ([.29), we have used the expressions for the operators Kq,1y (B:39), (E9), and
then, substituting (F.3)-(7.4) into (5.29), (5.29), we find the gauge transformations for the
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vectors |W), W),

8|W) = —H(T[€1)+T5 |€2))+ LT |€3) + L7 1€4) + L5 |€5) + L [13) + T [€12), (7.23)

O|Wy) = L1|&y) — %|€5> = 1&7) = [X2) +2[A3) — Tp|Aa), (7.24)
0|Wy) = —La|&3) + %|€5> +[§7) = 2[A2) +[A3) — 7To[\a), (7.25)
O|W3) = —4T1[&2) + %’§5> —186) — |A3), (7.26)
) = ~ATIEN) + 5165) — 1€0) — 4len) — o), (7.21)
8| Ws5) = L1l€2) + [&0) — A1) +FTolA3), (7.28)
6| We) = YT1|€a) + [€8) — [Aa), (7.29)
8|W7) = AT2[&3) + |€s) + 21€10) + [Aa), (7.30)
6|Ws) = Lol&1) + [&0) +7T0|A2) — [A1), (7.31)
8|Wo) = |&5) — 4[11) — T'|€13), (7.32)
8| Wyg) = —%’§5> + [&6) + [€7) + L111612), (7.33)

for the vectors |¢), 1),

Slpr) = —2|&) +AT1 |€6) + LT [€s) + AT1612) — | X6) (7.34)
8lp2) = —Li|&7) — AT |€o) + Lalér2) — ATolAe) — A7), (7.35)
Slps) = —T|&) +1€a) — FT7 |€10) 5 (7.36)
Slpa) = Tlér) — [€2) + L [€10) + 27T [€11) (7.37)
Slp1) = =AT1l&1) + T &) + [€13) — [No) (7.38)
8lp2) = ATh|&s) — T &) (7.39)
8lp3) = L1l&1) — T &) — 2|Ag) + FTo|A) , (7.40)
Olpa) = Lal&s) + TTI&7) — [€r3) (7.41)
and for the vectors |x,),
dlx1) = —ATol&) = AT5 A1) + Ly [A2) +TF A7) — 25T [As) + L |No) . (7.42)
dlx2) = —ATolé2) — FT1 A1) + Li[As) — A7), (7.43)
Slxs) = —2[&) +3Tol&) +AT5 | As) — Ly | A1) — T [X6) + 3T No) (7.44)
dlxa) = —2I€2) +FTol€a) +FT1 [A2) + LT [Aa) + [X6) , (7.45)
dxs) = ¥Tol&s) — 4[A1) + 2[As) (7.46)
dlx6) = 7Tol86) — 2/€0) — 2[A1) + [As) +FT1[A7), (7.47)
Sx7) = ¥Iol&7) + 2[&0) — |As) + L1|Ae) (7.48)
dlxs) = —7Tol€s) — 2[&6) — 2[&7) + 2|A3) — YT1[Xe) (7.49)
dlx9) = —7To|8e) + L1|A7) (7.50)
dx10) = —7Tol&10) — 4[11) + [A2) + [A3) — T A9) (7.51)
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dlx11) = YTolé11) — (A1) + TXs), (7.52)
dlx12) = ATolé12) + Lt As) + L[ Xe) + 7Ty [ A7) (7.53)
5|X13> = ’)/T0|£13> - T+|)\5> - 4|)‘8> . (754)
Then, substituting expressions ([.15)—(f-1§) into (5-30), (5-31]), we obtain the gauge trans-

formations for the zero-stage gauge vectors |&,,), [An),

8lé1) = AT €My + L ey + T ey — 23Tt ey + LT 1ely

slea) = —ATHIEM) + LHE!) — ety 7.56
dles) = AT 1E) — LF1eD) — THeD) + ATy 1es)) 7.57
Sles) = ATTHIESY) + L1eS)) + 1eg) | 7.58
sles) = —4je”) + 21l 7.59
dlee) = —21e”) +1e87) + ATler”) — A, 7.60
slery = 16y + Lafely + A8y, 7.61
5lés) = 2l ”> TSy, 7.62
5lgo) = Lale) — 2y — 7T 1A) 7.63
8léwo) = 1e8) + 1€y — Tl 7.64
sy = —[eMy + ey, 7.65
dlérz) = LH1eS)) + Ly (el) + ATt (et 7.66

= 1y — 41ely
— —3TleMy —2AMy

81A2) = —216) + ATplelY) + 1ASY) 7.69
81xs) = —20e) + ATy + A >, 7.70
51\ :—215§1> FToles?) + 2168, 7.71
3As) = —ATolely — 4AY), 7.72

— —3TplelV) — 216y — T A
- —m§>> +THAMY,
— 3Tole{Vy — 41y — T AL

Finally, using the equations (5.30), (F.31)) for the vectors (7.1§)-(7.19), we find the gauge

transformations for the first-stage gauge vectors |£§L1)>, Ao ),

5|£§1>=—2|5 ) slesy = €5y, (7.77)
3les) = 168, sleiy =0, (7.78)
oles)y = —alel?) | 3les)) = —ATTHIE?) | (7.79)
slet)y = 2317 1e) + LT (e, olely = T*1e?) | (7.80)
oles)y = —T+ey, (7.81)
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SNy = 131y | SNy = —31p)el?) — 41e@)y. (7.82)

In order to derive the action S 1) ([T29) only in terms of the component fields, we,
first of all, present the vectors |¥), |Uk), @), |p1), |xm) and the corresponding bra-vectors
as expansions with respect to the initial and auxiliary creation operators:

W)y = (of"ad (@) + f5al " 5uh(@) + fif a3 Fud(@) + bhu() (7.83)
+fi ;w%<m>+—ai Ha b Y (2) + af f*bWwf:(x)+b1+1b+w§(a¢))|0>,
At = (0l (v, (@asal + vt (@)ial fo + V3 (@)Fas fi + v (@)biz (7.84)

FOE @) fafi + S (o)batal + U ()30l + v @b ) o

by = (a6 X (@) +ag X )+ FF 6 (2) + 1 3 (@)0, m = 1,3, (7.85)
0. (Tl = OI(™ (@)balf + X2 (@) 0k (@)Fb 133 (@)7 fo)om = 1,3, (7.86)
2o = (5ai el X2 (@) + o X2 (@) + b)) 10), (7.87)
20y (Kizl = (0152 (@haka + xE2* () fraf + xa(@)bnr Ao (7:89)
i) = (@ X @) + S Fxm (@) 10}, m = 2,4, (7.89)
(10 (Tl = (01 (i (@)at + x5 @)71 ) o, (7.90)
W00 = r(@I0) k=110, le)ae) = (af"eh(e) + [ Fa(@)l0),  (791)
0Tkl = (017 (@)Fo, 0@l = (0/( 4 (@) alwl( D7) T, (7.92)
\pm,m) = 6" p(@)[0), =104, [mdog) = Xm(@)I0), M0 =511, (7.93)
—1,0{| = Olp; (2)bA0, 0,0){Xm| = <0|X ()70, (7.94)
IX13) (~1,1) = 0" x13(2)[0) , (1.1 (X3l = (O3 (2)b0 - (7.95)

Second, let us fix preliminarily a part of the gauge ambiguity starting from the first-stage
gauge parameters. To this end, we can use the choice of the second-stage independent
vectors |£§2)>, |£§2)>, entering relations (7.77)-(7.89) as shift parameters, in order to get rid,
for instance, of the vectors [£;7), |y ), so that the description of the model is transformed
to a first-stage reducible theory with independent first-stage gauge parameters, \)\gl)% \51(11)>,
n=2,...,8, and without restrictions ([.77)—(F-89).

By the same argument, we can make the zero-stage gauge vectors |&,), m =
2,4,6,...,10,13 to vanish by using a choice for the parameters \5,(7%)% m = 7,6,2,5,3,
\)\gl)% ]551)>, \§é1)>, respectively, in the gauge transformations (7.55)—([.76). As a result,
the remaining gauge transformations with the independent first-stage gauge parameter
|§£1)> for the remaining zero-stage vectors have the form

&) = 0, k=1,511,12, slgs) = —LileMy, (7.96)
S = —3TplelM)y, SIN) = 0, 1=1,2,3,5,....,9. (7.97)
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Finally, in the same manner, we can get rid of the fields [¥), k =1,...,5, |p1), |p2),
lp1), 1p3), [x3)s |x5) with the help of a corresponding choice for the independent gauge
parameters |&5), [A2), |As), |€11), [N), L = 1,6,7,9,8, |€1), |As), respectively, in the gauge
transformations (7.23)—(7.54). The resultant gauge transformations for the remaining fields
), [Wg), k=6,...,10, |©3), [pa), |p2)s |pa), Ixk), & =1,2,4,6,...,13, with the zero-stage
gauge vectors |€3), |£12), |A4), that have not been used previously, are reduced to

0|W) = LT |&3) + T |€12), (7.98)
6|We) = —|A4) 0| W7) = AT3[&3) + |Aa) (7.99)
6|¥;) =0, 1=38,9, 8|W10) = L11l&12) (7.100)
Oles) = —T|&3) 8ps) =0, (7.101)
8]p2) = '?T1!§3> 8lpa) = L1lés), (7.102)
Sxe) =0, k=1,2,6,...,11,13, Slxa) = LT |\, (7.103)
d|x12) = 7T0|512> (7.104)

As a consequence, the action ([(.29) is simplified as follows:

San = [(‘T’\K(l 1y {3T019) + Ti' [x1) + T3 Ix2) + L3 [xa) + AT [xa2) + 7L [x13) }

Wg| K11y {=To|Vs) + YLa2|x1) + Flxo0)}

@7|K(1 1 {7L1lx2) + Alxo)} + (Us| K1 1) {—T1lxa) + Flxs)}
ol K(1,1) {Tol¥10) + Flxe) +FIx7) +FL11lx12) }

W10/ K11y {491x11) + AT |x13)}

+(
(
(¥
—(
(B3| K1) { =L Ix7) + T1 Ixo) +FL1|x12) }
(
(
(X
9%

++

+ +

@alK 1) {—27Ix2) — T1 Ixe) — Tilxi2) }

P2l K11y {7L1Ix1) — AT  Ixo) } + (pal K1) {—5Tolpa) — AT F |x7) + Alxas) }
+(Xal K11y {=xa)} + (al K1) {—3Tolxa) } + (X6 K11 {=7Ix10)}

(e K 1,0 {=Fxa0)} + (R Ko {Tolxao) — 27han}] +ece., (7.105)

+

Then, after a substitution of expressions ([7.83)-([.95) into ([.107), we find the action
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for a field of spin (3/2,3/2) in a manifest form:
7, ¢ v v v v v
Sy = /ddm lwu,u{_i'ypapwm F AN AN =X - X }

- ? y , 1 S S - d
_2¢W{_§7papw“ +’Y“X11 + §X12u + 577“ X13} +¢}1L{2<3 _ §>,Ypapww

HAP O — A (Ax] 4 (6 — d)xT) + (6 — d)x ™ + A + (10 — d)xm“}
5 {adyP 0% — A*(2dx1 + 4xT) + A + 2dx M + (4 + 2d)x "}

- 1
+(d — 2)%{—57”%1&2“ +fxa — xPH a0y + X }

—)ufd d d
+1/J{§ (Z — 1) YO, + 2(5 - 3) VPO — 17 Dpihs + 2x7 + (1 - 5))(2

d d _
+ (3 — 5) X3+ (5 — 1) X12 + x13} + w}{—%yﬂap[(zo — 8d + d?)y] + 8¢3]

+8x1 + (20 — 8d + d*)xT — (8 — 6d + d*)x2 + (d — 2)x12 + 4x13}
- 1d
rit{ o aid i+t |
+P6{ ey Opbs + 10" X5 + xo b + U7 {10" X + xo } + s{V X + (2 — d)xa + x5}

_ 1 d B
—1—1/19{—17“8“%0 + X6 + X7+ §X;1L2“ + <1 - 5) X12} + ¢10{—4X11 + 2X13}

+@0 { =10 x7 — Y'x0 — 10, X"} + (d — 2)@a{—2x2 — x6 — VX7 + x12}
+@p {20 + v*x6 — x4+ (d — 2)x"*} — 202 {10" X" — X0}

m v P2 X X9
1

_ 2 _ _ _
—2/)4{—57“3;@1 - X7+ X13} + XXM+ (2 = d)Xaxa — X7 OX

5 +ecc (7.106)

. d\ _ _ _ _
+1 <1 - —) X47"0u X4 — X6X10 — X7X10 — X8{2x11 + 17" Oux10}

Here, the d? functions 1, are the basic spin-tensor field of spin (3/2,3/2) subject to the
conditions (B.2)-(R.5) encoded by the action, and the other fields are auxiliary ones. Then,
in order to present the gauge transformations in a manifest form, we rewrite the zero-stage

|€3), | \4) and first-stage |£i1)> gauge parameters in (7.15)-(7.17) as follows:

€)= (b6 @) + a2 (@) + [FVAE (@) + S5 (@) |0),  (7.107)

€12) (2,0) = (%alﬂtafv 12 (2) + £ 5612 () +bl+1512(x)>|0>, (7.108)
A1) 00) = Aa(2)]0) €00 = &7 @0y, (7.109)
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and then substitute them into (7.98)-(F.104). As a result, the gauge transformations for
the fields associated with spin (3/2,3/2) have the form

0y (2) = o () — ﬁ(ﬂ?), 5%:/(53) Za{u (@) = & (), (7.110)
L) = —0,EHe) — (), W2(2) = —€2(), (7.111)
593 (z) = —@ég(a:) +€2(a). w(x) = %), (7.112)
o () = o3 (x) = &i2(x) (7.113)
opg(x) = —>\4( ) Sio(x) = 567 (x) + (1 = 9éa(w),  (7.114)
Sy () = ( )+2€ ’(x), O3 () = 265(x) + €5 (x) (7.115)
Opa(w) ="E,° — dgz(w) = 265(x),  Opala) = za“fs“”(m), (7.116)
5xﬂ(x) —18 o Aa(T) 5X4(x) (7.117)

i () = 1P 0,65 (x) X (@) = W”apﬁ,lf(x)’ (7.118)

5X12(x) 1P 0p12() , (7.119)

5 () = AHE3(x) + (6 — D)ER(x) + A€ () + Ma(a) (7.120)

whereas the nontrivial gauge transformations for the gauge parameters are written as fol-

lows:

062 (1) = 104" (), SAa(z) = 170, (). (7.121)

Let us present the action in terms of the spin-tensor field ¢, , alone. To this end, we
remove the fields 1, ww P, <pu, <p3, p2 by using their gauge transformations with the
respective gauge parameters §W, u , €19, };3, {%, 5%. Third, we express the fields 1, 13,

Xs, X9 by using the equations of motion (11,32, xs, Xo) = (O,fy“zpﬁ, —2110, —z@“xi), which
results in the vanishing of the terms with the Lagrangian multipliers x1, x%, x11,%7. As a
result, we find

Sa) = /d w[%u{——v”@ PV NP AR — a0 X —Xlz“”}

03wy O+ A [—g’y” OB + dlxaz + x13) | + 4 + 24y

+(4 + 2d)X12“} + (d - 2)1/73{—%7P8p¢2“ + Fxe — X+ 10t X + xlz“}
+&6{w“8m +10M 0 — zaﬂxi} + @s{v“xﬁ + (2 —d)xa - 2¢10}
+7/)9{—W“3u¢10 +x6+ X7+ 5 Xm“ + <1 - g)mz}
+(d—2)¢4{—2><2—x6—7 X, +X12}+s5f1{2X2“+7“X6—%x12“”+(d—2)><12"}

B 2
_2p4{—§'yﬂaup4 - X7+ Xlg} + (2 —d)xaxa — 59@[}’ QVX4;L + X2X4ﬂ
dy _ v = v 7 K
+Z<1 - 5))(47 OuX4 — X6X10 — X7X10 + 2¢10{X13 + vy aleo} +c.c., (7.122)
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and the remaining reducible nontrivial gauge transformations for the fields associated with
spin (3/2,3/2) have the form

Py = —10,E2, oy = —Ma, Oy = —10uMs. (7.123)

We now express the fields ¢, ¢4, 919 by using the corresponding equations of motion

Wk, pa, Y10) = (0, %1/)9, p4), which implies the vanishing of the terms with the Lagrangian

11
i

by using the corresponding equations of motion

multipliers x1!, x!2, x13. We then proceed to do the same with the fields 2, 19, x10, pa

1 2
¢5 = m(’y“wu,y + 161/7/16) 9 ¢9 = E(nuywu,u + ’YV(P?/) ) (7124)
4 d 1 d
o= (= Dvsrat]. L[ v rat]

which results in the fact that the action no longer has any terms containing the Lagrangian

multipliers le, X}fw X65 X7+

Then, the fields 10,1, Ok X4, Xﬁ can be expressed in terms of ¢, by using the

corresponding equations of motion for the Lagrangian multipliers Xi, X2, X}LQ, g, as follows:

Yu(d—2)

A2(2—3d+8) (@2 4+ 11d=6)y 07" —d(d—1)7"1"1p0 |, (7.126)

Zaﬂ¢6 = _'YPTJZ)p,,u +

4 Tp 3 2 o 2 o
= ———"—1(d°—15d"+16d—12 onP?+d(d* —d+2)y" o
Xp dz(d2—3d+8) [( + )wp, 7”7 +d( +2)vPy Py, }
=Y (Ypu + Ypup) (7.127)
4 r}/ﬂ 2 ol o
= a7 o |(d—3d— o’ +dyf ol 12
Pu d(d? — 3d + 8) {( 3 6)7/);), N’ + dyPy7 v, } (7.128)
1
=———————|dd+ 1DV, d?> —23d +1 177 12
X4 d(d2 — 3d + 8) { (d+ 1) Yo + (3 3d +10)tby,on } (7.129)

This causes the terms with the Lagrangian multipliers Xi, X2, X}LQ, 1pg to vanish, so that
the action in terms of the rank-2 spin-tensor field v, , alone takes the form

7 ¢ v v ’)ﬂu(d2_d+2) o o
Sa = /ddﬁﬂllbp,u{—§7pap¢“’ +10 [M [(d2—3d—6)¢p,o77p +dyPy T;Z)p,a}

P+ P0) = (= 2] |

(1-d) ) [(d2_3d—6)1/?p,av7””+d@p70707p} 7”) .

d-2/ -
R po R S
g <’7 Yoot B 3d 18
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_E p d—2 v po PYV(Q_d)(d_l) d2_ d— PO 4 d~nP~O
X{ 27 6p< d v ¢p,o"7 + dz(d2—3d+8) ( 3 6)%,077 + avy"y T;Z)p,o

1

10" ——————|d(d + 1)y Yo + (3d° — 23d + 10)¢, 51"
O =R [ DY Ve + (O = 23+ 1000 ”

(Jﬁp,un”” +
[

_l’_

[(d2 —3d—6)pon" +d@p70707”]){—27“3u x

|

1
(d%—3d+8)

X

_l’_
QN Ul

(=46 G -0 ]

<{pragl(-3)r v gy

[(dz —3d—6)1 00" + dv”v"%,oﬂ
0,2 D)o g [t 7,

(d2 —d+ 2) 2 " po 7 o p " n p
+{ d2(d® — 3d + 8) [(d 3d = 6)Yp,on™ + dibpoy }'Yu + (Yo + Yup)y

d—2 - ? A (d?—d+2) T,
R PO __AY I S _ _ po PAO
g Vel 7“}< 27 a”){dQ(d2—3d+8) [(d 3d=6)Pp.on™ + dy’y W”]
d—2
Sy (PP 4 ) — Tyu¢p70npo}

+(1 d 1

-y - /) P 2 _ 7 po v
2= Ty [ A(d+1)5, 0777+ (302 =23+ 10) 07" | (170))

x [d(d + 1)y, + (3d% — 23d + 10)%0”/)0] tee., (7.130)

which is invariant with respect to the remaining gauge transformations from ([f.123),
59 (1) = —10,E2% (x), being reducible due to (F121), 062 (z) = zaufil)(x).

Finally, extracting the physical, antisymmetric, part v,,), of the basic field 1, ,, (thus
resolving the condition (R.§) in question), which is in one-to-one correspondence with the
Young tableaux (R.1]) for n; = ny = 1, we obtain the action and reducible gauge transfor-
mation for the spin-tensor ,,], respectively [for 477 = %(7”7‘7 — 7P,

_ d
S¢[M = /d T

" v (d2 —d+ 2) " v o v o
— 1y O + Zm%uu]{a YHAPT + 71O Wp}lb[pa]

(a=2)[(d=2)2(d= 1)+ (a2~ d+2)?| +d2 14+ (2= d) (d+1)?]
H{ A2(d2—3d+8)2
20d4+1)(d—22d-1)2 - . . .
= dQ(C)lg—3d)+(8)3 ) }WW Oy %Tw]], (7.131)
Oy = —10u€s + 10,6, 06 =10,D,  (€,6V) = (€2,6]Y). (7.132)

To obtain a Lagrangian description of the massive rank-2 antisymmetric spin-tensor

Y}, having the Young tableaux (B.1) and subject to conditions (R.3), (B.4) and the require-
ment (1449, — m)®,,, () = 0, instead of (£.4), we may follow the example of section [.]]
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and apply the prescription (5.34)-(5.34) starting directly from the action (7.131]) written

for a (d + 1)-dimensional Minkowski space. First, we have the following representation
for the fields, MN = (] pled)) with the Stueckelberg field being M4 = @, and
with the gauge parameters £y = (£,,€). Second, the corresponding action can be obtained
from (7-131) by dimensional projection R4 — R4~ and must be invariant with respect
to the gauge transformations

(@) = —10,8,(x), dpu(x) = —10u8(x) + m&u(x), (7.133)
which, in turn, are reducible:
0¢u(z) = 10,6W(x), 5¢(z) = mEW(). (7.134)
Third, due to (5.36), we use the identity v ¢rg] = ¥#79[,0], and the identification
iMooy VL = (110, — m)pNEL My NN ED = (iy1 0, + m)yn VL (7.135)

which holds true if we replace VK [ynpVE]] by the quantities (yz)% VK]
[(v) 2+ INEN for k € Ny. After removing the gauge parameter &(z) by the shift trans-
formation, and then, in the same manner, the field ¢,, by means of the now independent
gauge transformation with the parameter £,(x), we obtain the Lagrangian for a massive
antisymmetric spin-tensor (3/2,3/2) field in a d-dimensional flat space:
(d*+d+2) - {
I3 OV AHAPT AT p} .
@+ D)@ —dx6) w77 7 Ui
(d—1) [(d_1)2d2+(d2+d+2)2] +(d+1)? [14+(1—d)(d+2)2}
* A+ 12(E—d+6)2

'c:/?[;w] = _&[uu] (27p8P B m)T/)[W] +1

2(d+2)(d—1)%d* | - .., m
- (d(+ 1)2(52 - d)+ 6)? }w[pow Py 0y — M)y Ypr - (7.136)

8. Conclusion

In the present work, we have constructed a gauge-invariant Lagrangian description of free
half-integer HS fields belonging to an irreducible representation of the Poincare group
ISO(1,d —1) with the corresponding Young tableaux having two rows in the “metric-like”
formulation. The results of this study are the most general ones and apply to both massive
and massless fermionic HS fields with a mixed symmetry in a Minkowski space of any
dimension.

In the standard manner, starting from an embedding of fermionic HS fields into vectors
of an auxiliary Fock space, we treat the fields as coordinates of Fock-space vectors and re-
formulate the theory in such terms. We realize the conditions that determine an irreducible
Poincare-group representation with a given mass and generalized spin in terms of differen-
tial operator constraints imposed on the Fock space vectors. These constraints generate a
closed Lie superalgebra of HS symmetry, which contains, with the exception of two basis
generators of its Cartan subalgebra, a system of first- and second-class constraints.
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We demonstrate that the construction of a correct Lagrangian description requires a
deformation of the initial symmetry superalgebra, in order to obtain from the system of
mixed-class constraints a converted system with the same number of first-class constraints
alone, whose structure provides the appearance of the necessary number of auxiliary spin-
tensor fields with lower generalized spins. We have shown that this purpose can be achieved
with the help of an additional Fock space, by constructing an additive extension of a
symmetry subsuperalgebra which consists of the subsystem of second-class constraints alone
and of the generators of the Cartan subalgebra, which form an invertible even operator
supermatrix composed of supercommutators of the second-class constraints.

We have realized the Verma module construction [£7] in order to obtain an auxiliary
representation in Fock space for the above superalgebra with second-class constraints. As
a consequence, the converted Lie superalgebra of HS symmetry has the same algebraic re-
lations as the initial superalgebra; however, these relations are realized in an enlarged Fock
space. The generators of the converted Cartan subalgebra contain linearly two auxiliary
independent number parameters, whose choice provides the vanishing of these generators
in the corresponding subspaces of the total Hilbert space extended by the ghost operators
in accordance with the minimal BFV-BRST construction for the converted HS symmetry
superalgebra. Therefore, the above generators, enlarged by the ghost contributions up to
the “particle number” operators in the total Hilbert space, covariantly determine Hilbert
subspaces in each of which the converted symmetry superalgebra consists of the first-class
constraints alone, labeled by the values of the above parameters, and constructed from the
initial irreducible Poincare-group relations.

It is shown that the Lagrangian description corresponding to the BRST operator,
which encodes the converted HS symmetry superalgebra, yields a consistent Lagrangian
dynamics for fermionic fields of any generalized spin. The resulting Lagrangian description,
realized concisely in terms of the total Fock space, presents a set of generating relations
for the action and the sequence of gauge transformations for given fermionic HS fields with
a sufficient set of auxiliary fields, and proves to be a reducible gauge theory with a finite
number of reducibility stages, increasing with the value of generalized spin.

We have sketched a proof of the fact that the solutions of the Lagrangian equations
of motion (p.24), (5.29), after a partial gauge-fixing, correspond to the BRST cohomology
space with a vanishing ghost number, which is determined only by the relations that extract
the fields of an irreducible Poincare-group representation with a given value of generalized
spin.

As examples demonstrating the applicability of the general scheme, we have derived
gauge-invariant Lagrangian formulations for the field of spin (3/2,1/2) and for the rank-
2 antisymmetric spin-tensor in a manifest form in both massless and massive cases. In
principle, the suggested algorithm permits one to derive manifest actions for any other
half-integer spin fields characterized by two rows of the corresponding Young tableaux.

The basic results of the present work are given by relations (5.27), where the action
for a field with an arbitrary generalized half-integer spin is constructed, as well as by
relations (f.2§)-(b.31)), where the gauge transformations for the fields are presented, along
with the sequence of reducible gauge transformations and gauge parameters.
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Concluding, we would like to discuss a number of additional points. First, the gauge-
invariant description of massless and massive HS field theories with a mixed symmetry is
an interesting starting point for a systematic construction of a Lagrangian formulation for
HS interacting vertices with mixed-symmetry fermionic HS fields, including the case of the
AdS space, in order to provide a description of the high-energy limit for open superstrings;
see the arguments in favor of this suggestion in BY. Second, the role of fermionic HS fields
in the above limit of superstring theory in connection with the AdS/CFT correspondence
signals the importance of extending the obtained results to the case of fermionic HS fields
with a mixed symmetry in the AdS space. Thus, the present Lagrangian description
takes a first step towards an interacting theory with mixed-symmetry fermionic HS fields,
including the case of curved backgrounds, and then towards a covariant construction
(following, e.g., the BV formalism) of the generating functionals of Green’s functions,
including the quantum effective action; examples of such calculations can be found, e.g.,
in [i9). Third, we estimate an extension of the obtained results to the case of arbitrary
fermionic HS fields with any number of rows in the corresponding Young tableaux as a
challenging technical problem. One of the possible approaches to this problem may rely
on creating a computer algorithm which would permit one to obtain the HS symmetry
superalgebra and calculate the action with the sequence of gauge transformations in
an analytic component form for fermionic fields of a given generalized spin. Finally,
the example of a field of spin (3/2,3/2) in section has demonstrated a possibility
of extracting a large number of auxiliary fields until the point when the component
form of the action and gauge transformations can be derived in a manifest form. In our
forthcoming work [5(], we plan to realize this possibility, which should permit one to
significantly reduce the spectrum of fields and gauge parameters in order to simplify the
component structure of the basic results of the present work, however, with a possible
appearance of additional off-shell constraints for the fields and gauge parameters.
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